Col•loqui

Complex Brunn-Minkowski theorems

Dimecres 4 d'abril de 2018

Bo Berndtsson

Chalmers University of Technology, Göteborg

The classical Brunn-Minkowski theorem is an inequality for volumes of convex bodies. It says that if A and B are convex bodies in \mathbb{R}^{n} then their Minkowski sum

$$
A+B:=\{a+b ; a \in A, b \in B\}
$$

satisfies the inequality

$$
\operatorname{Vol}(A+B)^{1 / n} \geq \operatorname{Vol}(A)^{1 / n}+\operatorname{Vol}(B)^{1 / n}
$$

It has many applications and is particularly powerful since in some ways it goes in the opposite direction to simpler convexity statements like Hölder's inequality.

Its complex counterpart is a similar statement for L^{2}-norms of holomorphic functions (or forms, or sections of line bundles) on domains in \mathbb{C}^{n} or complex manifolds. The complex version contains the real version as a special case, but is considerably more general. I will explain how this works and, time permitting, also indicate a few applications in algebraic and Kähler geometry.

Lloc: Aula T1, Facultat de Matemàtiques i Informàtica, UB Hora: 12.15
www.imub.ub.edu

